promotion image of download ymail app
Promoted

Find the lengths of the sides.?

The lengths of the hypotenuse and one leg of a right triangle have a difference of 2 feet. The other leg is 36 feet shorter than the hypotenuse. Find the lengths of the sides.

6 Answers

Relevance
  • 2 months ago
    Favorite Answer

    Refer to the diagram of the triangle given below -

    Let length of Hypotenuse (AC) =  x ft

    BC  =  ( x - 2 ) ft  ......... Given  and 

    AB  =  ( x - 36 ) ft  ...... Given

    According to the Pythagorus Theorem-

    AC²  =  AB²  +  BC²

    =>  x²  =  ( x - 36 )²  +  ( x - 2 )²

    =>  x²  =  ( x² - 72 x + 1296 ) + ( x² - 4 x + 4 )

    =>  x²  =  2 x² - 76 x + 1300

    =>  x² - 76 x + 1300  =  0

    =>  x² - 50 x - 26 x + 1300  =  0

    =>   x ( x - 50 ) - 26 ( x - 50 )   =   0

    => ( x - 26 ) ( x - 50 )  =  0

    =>  x  =  26 ft  OR  x  =  50 ft.

    If  Length of the Hypot. ( AC )  =  26 ft,  ...... 

    BC  =  ( x - 2 )  =  ( 26 - 2 )  =  24 ft   and  

    AB  =  ( x - 36 ) = ( 26 - 36 ) .... Which is negative. Hence  x ≠  26 '

    -------------------------------------------------------------

    Thus the only acceptable value of x  = 50 ft.

    -------------------------------------------------------------

    If  x  ( ie AC )=  50 ft. ......................... .......... Answer

    BC  =  ( x - 2 )  =  ( 50 - 2 )  =  48 ft.............. Answer

    AB  =  ( x - 36 )  =  ( 50 - 36 ) =  14 ft............Answer

    Attachment image
  • 2 months ago

    Remember Pythagoras.

    h^2 = L^2 + S^2

    Since the hypotenuse will be the longest side

    Then h - 2 = L

    h - 36 = S

    Substitute

    h^2 = (h - 2)^2 + (h - 36)^2

    h^2 = h^2 - 4h + 4 + h^2 -72h + 1296

    Form a quadratic

    h^2 - 76h + 1300 = 0

    Complete the Square

    (h - 38)^2 - (38)^2 = -1300

    (h - 38)^2 = -1300 + 1444

    (h - 38)^2 = 144

    h - 38 = 12

    h = 50

    Hence L = 48

    & S = 14

    • Commenter avatarLogin to reply the answers
  • 2 months ago

    The lengths of the hypotenuse and one leg of a right triangle 

    have a difference of 2 feet. 

    The other leg is 36 feet shorter than the hypotenuse. 

    h - a = 2

    h - b = 36

    2 + a = 36 + b

    a - b = 34

    a^2 + b^2 = h^2

    a^2 = (h + b)(h - b)

    a^2 = 36(h + b)

    Find the lengths of the sides.

    • Commenter avatarLogin to reply the answers
  • Ian H
    Lv 7
    2 months ago

    (a + 36)^2 – (a +  34)^2 = (72 – 68)a + 36^2 – 34^2 = a^2 

    a^2 – 4a – 140 = (a + 10)(a – 14) = 0 

    The sides are 14, 48 and 50 

    • Commenter avatarLogin to reply the answers
  • How do you think about the answers? You can sign in to vote the answer.
  • Philip
    Lv 6
    2 months ago

    Right angled triangle has hypotenuse = h and 2 legs a & b.

    a = h-2.

    b = h-36.

    a^2 + b^2 = h^2, ie., (h-2)^2 + (h-36)^2 = h^2, ie., h^2 -76h +1300 = 0.

    Then 2h = 76(+/-)D, where D^2 = 76^2 -4(1300) = 4(38^2 -1300) = 24^2.

    So h = 38(+/-)12. Discard root h = 38-12 = 26 since b would then = -10.

    (h,a,b) = (50,48,14) ft.

    • Commenter avatarLogin to reply the answers
  • Bryce
    Lv 7
    2 months ago

    (h - 2)² + (h - 36)²= h²

    h² - 4h + 4 + h² - 72h + 1296= h²

    h² - 76h + 1300= 0

    h= 38 +/- 12= 26, 50.  Reject 26.

    L1= 48 ft, L2= 14 ft

    • Commenter avatarLogin to reply the answers
Still have questions? Get your answers by asking now.