Use the Remainder Theorem. 11. (x^3 - 3x^2 + 4x +10)/ (x+1)?

will mark best answer :)

6 Answers

Relevance
  • MyRank
    Lv 6
    1 month ago
    Favorite Answer

    x³-3x²+4x+10/(x+1)

    f(x) = x³-3x²+4x+10

    x+1 = 0 →x = -1

    f(-1) = (-1)³-3(-1)²+4(-1)+10

    = -1-3-4+10 ≠ 0

    (x+1) ) x³-3x²+4x+10 (x²-4x+8

                x³+x²

               -    -

               ____________

               -4x²+4x

               -4x²-4x

               +   +

               ____________

                       8x+10

                       8x+8

                     -     -

               ____________

                              2

    • Login to reply the answers
  • Como
    Lv 7
    1 month ago

    x  + 1   = x  - (-1)

    f (-1)   = - 1 - 3  - 4  + 10   =   2____remainder

    • Login to reply the answers
  • 1 month ago

    (x^3 - 3x^2 + 4x +10)/ (x+1)

    f(-1) = (-1)^3 - 3(-1)^2 + 4(-1) + 10 = 2 answer//

    • Login to reply the answers
  • Philip
    Lv 6
    1 month ago

    Put f(x) = (x^3 -3x^2 +4x +10)

    f(-1) = (-3-3-4+10) = 0. Therefore f(x) has (x+1)

    as a factor of f(x) and, if we divide f(x) by (x+1),

    the remainder will b 0.

    • Login to reply the answers
  • How do you think about the answers? You can sign in to vote the answer.
  • 1 month ago

    f(x) = (x^3 - 3x^2 + 4x + 10) 

    if x = -1, f(x) = -1 - 3 - 4 + 10 = 2

    • Login to reply the answers
  • Pope
    Lv 7
    1 month ago

    Let f(x) = x³ - 3x² + 4x + 10.

    When dividing f(x) by (x + 1), the remainder is f(-1). That gives you the remainder only. It does not tell you the quotient. Synthetic division would be the way to go about that.

    • Login to reply the answers
Still have questions? Get your answers by asking now.