Anonymous
Anonymous asked in Science & MathematicsMathematics · 6 months ago

Determine the length of the arc of a circle with radius 15 m and a central angle of 100°??

4 Answers

Relevance
  • david
    Lv 7
    6 months ago
    Favorite Answer

    a formula is given in Trig for arc length, but the central angle must be in radians

    ... instead you can use a proportion

    Angle A / arc length a = angle B / arc length b

    use 360, an entire circle for angle B .. and use the circumference of the circle as arc b

    100 / a = 360 / (2pi*15) <<<< solve for a

    a = (100/360)* (2pi*15) = 26.18 m

  • Como
    Lv 7
    6 months ago

    --

    L = (100/360) x 2π x 15 m

    L = (10/36) x 30π. m

    L = (5/18) x 30π m

    L = (5/6) x 10π. m

    L = (25/3) π m

    L = 26•2 m

  • Ray S
    Lv 7
    6 months ago

    The circumference of a circle is the arc length subtending a central angle of 360°. It follows that the arc length subtending a central angle of 100° would be 100°/360° or 5/18 of the circumference. So, for a radius of 15m and a central angle of 100°, the arc length A would be:

                                     A = (100°/360°) C

                                     A = (100°/360°)(2 π r)

                                     A = (100°/360°)(2* π *15)

                                     A = (5/18)(30 * π )

                                     A = 150π/18

                                     A = 25π/3

                                     A = (25/3)(22/7)

                                     A = 26.19m            ← ANSWER

  • alex
    Lv 7
    6 months ago

    Rule

    Arc length = rθ , r = radius , θ = angle in radian

Still have questions? Get your answers by asking now.