A fair dice is rolled 5 times. Calculate the probability of getting the number 6 for 5 times?

P(X = r) = C(n, r)*p^r * q^(n - r),

r = 0, 1, 2, ... n.

So for this question, I let my r = 5, since the r represents the total number of "successes".

P(X = 5) = C(5, 5) * (1/6)^5 * (5/6)^0

..............= 1 * 1/7776 * 1

..............= 1/7776

Correct? Thanks. I think there's a way of doing it without using this formula, that is by drawing the tree diagram. But that would be too complicated?

Update:

I take back what I said, the tree diagram method would be much easier.

2 Answers

Relevance
  • 2 years ago
    Favorite Answer

    singular of dice is die.

    1/6 for each, so it's (1/6)⁵ = 1/7776

  • David
    Lv 7
    2 years ago

    The probability is 1/6*1/6*1/6*1/6*1/6 or 1/6^5 = 1/7776

Still have questions? Get your answers by asking now.