Verify the identities, manipulating only one side of the equation at a time. Use the abbreviations LHS and RHS for left and right hand side?

42) 1-csc(x)sin^3(x)=cos^2 43) (1+cot(alpha))^2- 2cot(alpha)= 1/ (1-cos(alpha))(1+cos(alpha)) 44) 1-sin(x) = 1-sin^2(-x) / 1-sin(-x) 45) sinx / sinx+1 = cscx-1 / cot^2 x 46)cos(x- pi/2) = cosx tan x 47)sin(x- pi/2) = cos x 48) sin^4 (z) + cos^4(z) = 1 49) cos (alpha -beta) / sin(alpha + beta) = 1+ tan alpha tan... show more 42) 1-csc(x)sin^3(x)=cos^2
43) (1+cot(alpha))^2- 2cot(alpha)= 1/ (1-cos(alpha))(1+cos(alpha))
44) 1-sin(x) = 1-sin^2(-x) / 1-sin(-x)
45) sinx / sinx+1 = cscx-1 / cot^2 x
46)cos(x- pi/2) = cosx tan x
47)sin(x- pi/2) = cos x
48) sin^4 (z) + cos^4(z) = 1
49) cos (alpha -beta) / sin(alpha + beta) = 1+ tan alpha tan beta / tan alpha - tan beta

for the life of me, I don't understand how to do these....
2 answers 2