Sandy asked in 科學數學 · 7 years ago

1題微積分的證明

Use the fact that ln 4 > 1 to show that ln 4^m>m for m>1

Conclude that ln x can be made as large as desired by choosing x sufficiently large

What does this imply about lim x→∞ ln x?

Update:

感動貓要回答阿

這樣我才能給你點數

11 Answers

Rating
  • 7 years ago
    Favorite Answer

    ln 4 > 1

    m ln 4 > m

    ln 4^m > m

    2014-04-28 23:19:46 補充:

    When x is large, ln 4^x is larger, ln 4^{ln 4^x} is even larger...

    This implies that lim x→∞ ln x does not exist (or the limit is +∞)

    2014-04-29 21:49:29 補充:

    Thank you Sandy~ (◕‿◕✿)

    As discussed in the comment box,

    consider

    ln 4 > 1

    m ln 4 > m [by multiplying m > 1 to both sides]

    ln 4^m > m [by property of logarithm]

    Therefore, for any m > 1, ln 4^m would be greater than m.

    When x is large, ln 4^x is larger, ln 4^{ln 4^x} is even larger...

    This implies that lim x→∞ ln x does not exist (or the limit is +∞).

    2014-04-30 14:39:17 補充:

    謝謝 老怪物 的意見~

    希望發問者明白~

  • Anonymous
    7 years ago

    到下面的網址看看吧

    ▶▶http://candy5660601.pixnet.net/blog

  • 7 years ago

    到下面的網址看看吧

    ▶▶http://candy5660601.pixnet.net/blog

  • Anonymous
    7 years ago

    到下面的網址看看吧

    ▶▶http://candy5660601.pixnet.net/blog

  • How do you think about the answers? You can sign in to vote the answer.
  • Anonymous
    7 years ago

    參考下面的網址看看

    http://phi008780520.pixnet.net/blog

  • Anonymous
    7 years ago

    參考下面的網址看看

    http://phi008780520.pixnet.net/blog

  • Anonymous
    7 years ago

    參考下面的網址看看

    http://phi008780520.pixnet.net/blog

  • Anonymous
    7 years ago

    參考下面的網址看看

    http://phi008780520.pixnet.net/blog

  • 7 years ago

    關於最後一個小問題 x→+∞ 時 ln(x) 的行為.

    這需要一個結果 (定理): ln(x) 是 strictly increasing 的.

    因此, 當 x 可以任意大時, 可找一個上升數列 m_1, m_2,...

    x 大於 m_1, 所以 ln(x) > ln(m_1);

    x 大於 m_2, 所以 ln(x) > ln(m_2);

    以此類推.

    所以 x 無限增大時, ln(x) 也無限增大.

  • 7 years ago

    下面的網址應該對你有幫助

    http://phi008780426.pixnet.net/blog

Still have questions? Get your answers by asking now.