Anonymous asked in 科學及數學數學 · 7 years ago


For a linear operator P on a finite-dimensional space V , the property P^2= P implies

that V = the direct sum of Null P and Range P . Prove that if P^2= P , then P is

diagonalizable and its eigenvalues can only be 0 or 1.

1 Answer

  • Andrew
    Lv 6
    7 years ago
    Favorite Answer

    The minimal polynomial for P is P^2 - P = P(P - I) = 0

    The matrix P is diagonalizable because the minimal polynomial factorize into distinct linear factors.

    The eigenvalues can only be 0 or 1 because these are the only roots for the minimal polynomial.

    See the wikipedia page Minimal polynomial for more details on it.

    • Login to reply the answers
Still have questions? Get your answers by asking now.