Trending News
得新的二次函數為_________。
1.二次函數y=-2x ²:
(1)向右平移3單位,得新的二次函數為______。
(2)承(1),再向下平移4單位,得新的二次函數為_________。
2 Answers
- Anonymous8 years agoFavorite Answer
交大游凱復的心得整理:Operations on polyhedra
Elements are given from the seed (v,e,f) to the new forms, assuming seed is a convex polyhedron: (a topological sphere, Euler characteristic = 2)
Operator Name Alternate
construction vertices edges faces Description
Seed v e f Seed form
r Reflect
(Hart) v e f Mirror image for chiral forms
d dual f e v dual of the seed polyhedron - each vertex creates a new face
a ambo e 2e 2 + e The edges are new vertices, while old vertices disappear. (rectify)
j join da e + 2 2e e The seed is augmented with pyramids at a height high enough so that 2 coplanar triangles from 2 different pyramids share an edge.
t truncate dkd 2e 3e e + 2 truncate all vertices.
-- -- dk 2e 3e e + 2 Dual of kis, (bitruncation)
-- -- kd e + 2 3e 2e Kis of dual
k kis dtd e + 2 3e 2e raises a pyramid on each face.
c chamfer e + v 4e 2e + f New hexagonal faces are added in place of edges.
- - dc 2e + f 4e e + v
e expand aa 2e 4e 2e + 2 Each vertex creates a new face and each edge creates a new quadrilateral. (cantellate)
o ortho de 2e + 2 4e 2e Each n-gon faces are divided into n quadrilaterals.
p propellor
(Hart) v + 2e 4e e + f A face rotation that creates quadrilaterals at vertices (self-dual)
- - dp e + f 4e v + 2e
s snub dg 2e 5e 3e + 2 "expand and twist" – each vertex creates a new face and each edge creates two new triangles
g gyro ds 3e + 2 5e 2e Each n-gon face is divided into n pentagons.
b bevel ta 4e 6e 2e + 2 New faces are added in place of edges and vertices, Omnitruncation (Known as cantitruncation in higher polytopes).
m meta db & kj 2e + 2 6e 4e n-gon faces are divided into 2n triangles
Special forms
The kis operator has a variation, kn, which only adds pyramids to n-sided faces.
The truncate operator has a variation, tn, which only truncates order-n vertices.
The operators are applied like functions from right to left. For
- 芳Lv 58 years ago
1.二次函數y=-2x ²:
(1)向右平移3單位,得新的二次函數為
y =-2(x-3)^2
(2)承(1),再向下平移4單位,得新的二次函數為
y =-2(x-3)^2 - 4