Trending News
x^2+6x-4=0. Solve with exact answers.?
Type exact answer, if you need to use radicals you can. Separate answers with commas.
6 Answers
- DaveLv 59 years agoFavorite Answer
x = (-b + sqrt(b^2 - 4ac)) / (2a)
x = (-6 + sqrt(6^2 - 4(1)(-4)) / (2(1))
x = (-6 + sqrt(36 - (-16))) / 2
x = (-6 + sqrt(36 + 16)) / 2
x = (-6 + sqrt(52)) / 2
x = (-6 + 2sqrt(13)) / 2
x = -3 + sqrt(13)
x = (-b - sqrt(b^2 - 4ac)) / (2a)
x = (-6 - sqrt(6^2 - 4(1)(-4)) / (2(1))
x = (-6 - sqrt(36 - (-16))) / 2
x = (-6 - sqrt(36 + 16)) / 2
x = (-6 - sqrt(52)) / 2
x = (-6 - 2sqrt(13)) / 2
x = -3 - sqrt(13)
So x equals:
-3 + sqrt(13)
and
-3 - sqrt(13)
- Anonymous9 years ago
easy peasy
- ✰✰Angel ✰✰Lv 49 years ago
x^2 + 6x - 4 = 0
Use quadratic formula
x= -b +_ square root of (b^2 - 4 ac)
-----------------------------------------------
2a
= - 6 +_ sqrt( (6)^2 - 4(1) (-4) )
------------------------------------------
2(1)
= -6 +_ sqrt(36+16)
--------------------------
2
= - 6 +_ sqrt(52)
--------------------
2
= -6 + 2 +_ (sqrt) 13 (The 52 is written as simpler. (2 root of 13)
------------------------------
2
= -3 +_ sqrt(13) -----> answer
Hope it helps!
Source(s): C$K - « Chippy »Lv 69 years ago
Quadratic formula: (-b±sqrt(b^2-4ac))/2a
a=1, b=6, c=-4
Therefore...
(-6±sqrt(6^2-4*1*(-4)))/(2*1) = (-6±sqrt(36+16))/2 = (-6±sqrt(52))/2
sqrt(52) can be written as 2*sqrt(13).
(-6±2*sqrt(13))/2=-3±sqrt(13)
And that's your answer. -3±sqrt(13)
- How do you think about the answers? You can sign in to vote the answer.
- Anonymous9 years ago
x²+6x-4 = 0
= (x²+6x+9)-13 = 0
= (x+3)²-(√13)² = 0
= (x+3+√13)(x+3-√13) = 0
As either of the multiplier must be 0, then x = -3+√13, -3-√13