Trending News
integral ln(x^2-x+2)dx?
Can anyone solve this using integration by parts? I haven't learned the whole integration with i thing so if possible don't use that strategy. Thank you!!
2 Answers
- 9 years agoFavorite Answer
I = ∫ In( x² - x + 2 )dx
Let :
. . . . . . . . . . . . . . . . . . . . . 2x - 1
u = In( x² - x + 2 ) => du = ▬▬▬▬ dx
. . . . . . . . . . . . . . . . . . . . x² - x + 2
dv = dx => v = x
So that :
I = ∫ In( x² - x + 2 )dx
. . . . . . . . . . . . . . . x(2x-1)
= xln(x² - x + 2) - ∫ ▬▬▬▬▬ dx (1)
. . . . . . . . . . . . . . x² - x + 2
Let solve :
. . .2x² - x
∫ ▬▬▬▬▬ dx
. .x² - x + 2
. . . . . . . . 2x - 5
= ∫ ( 2 + ▬▬▬▬▬ ) dx
. . . . . . . x² - x + 2
. . . . . . . . . . 2x - 1 . . . . . . . . . . 1
= 2∫ dx + ∫ ▬▬▬▬▬ dx - 4 ∫ ▬▬▬▬▬ dx
. . . . . . . . . x² - x + 2 . . . . . .x² - x + 2
= 2x + J + H (2)
Let solve J :
. . 2x - 1
∫ ▬▬▬▬ dx
. x² - x + 2
Let :
u = x² - x + 2
du = (2x - 1)dx
. . du
∫ ▬▬▬
. . u
= ln|u| + C
= ln|x² - x + 2| + C (3)
Let solve H :
. . . . . . 1
- 4 ∫ ▬▬▬▬▬ dx
. . . . x² - x + 2
. . . . . . . . . 1
= -4 ∫ ▬▬▬▬▬▬▬ dx
. . . . .(x - 1/2)² + 7/4
Let :
u = x - 1/2
du = dx
. . . . . . . . . 1
= -4 ∫ ▬▬▬▬▬▬ dx
. . . . . . u² + 7/4
Let
u = √7.tanφ / 2( φ ∈ (-π/2 ; π/2 ) ) => φ = arctan( 2u/√7 )
du = √7 / ( 2cos²φ )
. . . . . . . . . . dφ
= -4 ∫ ▬▬▬▬▬▬▬▬▬
. . . . 7/4( 1 + tan²φ )cos²φ
. . . .16
= - ▬▬ ∫ dφ
. . . .7
. . . 16
= - ▬▬φ + C
. . . .7
. . . 16
= - ▬▬arctan( 2u/√7 ) + C
. . . .7
. . . 16
= - ▬▬arctan[ 2(x - 1/2)/√7 ] + C (4)
. . . .7
From (1) ; (2) ; (3) ; (4)
. . . . 16
=> ▬▬▬arctan[ 2(x - 1/2)/√7 ] - ln|x² - x + 2| - 2x + xln(x² - x + 2) + C
. . . . .7
Source(s): I'm a Vietnamese student grade 12 - .Lv 49 years ago
Begin with integration by parts: u=ln(x^2-x+2), dv=dx, du=(2x-1)/(x^2-x+2) dx, v = x.
The integral becomes uv - integral v du = x ln(x^2-x+2) - integral[(2x^2-x)/(x^2-x+2)]dx.
Divide the numerator of the integrand by the denominator to simplify this to:
x ln(x^2-x+2) - integral[2 + (x-4)/(x^2-x+2)]dx.
The constant term in the integral can easily be integrated right now:
x ln(x^2-x+2) - 2x - integral[(x-4)/(x^2-x+2)]dx
Now, complete the square of the denominator of the integrand to convert it to (x-1/2)^2+7/4:
x ln(x^2-x+2) - 2x - integral[(x-4)/( (x-1/2)^2+7/4 )]dx
Split the numerator into two terms: (x-1/2)-7/2, and then create two separate integrals:
x ln(x^2-x+2) - 2x - integral[( (x-1/2) - 7/2 )/((x-1/2)^2+7/4)]dx
x ln(x^2-x+2) - 2x - integral[(x-1/2)/((x-1/2)^2+7/4)]dx + integral[(7/2)/((x-1/2)^2+7/4)]dx
Make the substitution u=x-1/2, du=dx:
x ln(x^2-x+2) - 2x - integral[u/(u^2+7/4)]du + (7/2)integral[1/(u^2+7/4)]du
The left integral can be solved by substitution: w=u^2, dw=2u du
x ln(x^2-x+2) - 2x - (1/2)integral[1/(w+7/4)]dw + (7/2)integral[1/(u^2+7/4)]du
x ln(x^2-x+2) - 2x - (1/2)ln(w+7/4) + (7/2)integral[1/(u^2+7/4)]du
Remember that w=u^2=(x-1/2)^2:
x ln(x^2-x+2) - 2x - (1/2)ln((x-1/2)^2+7/4) + (7/2)integral[1/(u^2+7/4)]du
x ln(x^2-x+2) - 2x - (1/2)ln(x^2-x+2) + (7/2)integral[1/(u^2+7/4)]du
The logarithmic terms are identical, so we can combine them:
(x-1/2) ln(x^2-x+2) - 2x + (7/2)integral[1/(u^2+7/4)]du
The remaining integral could be found in most integral tables, but I'll solve it anyway.
Do a trigonometric substitution: let u = (sqrt(7)/2) tan z, du = (sqrt(7)/2)sec^2(z) dz
(x-1/2)ln(x^2-x+2) - 2x + (7/2)(sqrt(7)/2)integral[sec^2(z)/((7/4) tan^2(z)+7/4)]dz
Since tan^2(z)+1=sec^2(z),
(x-1/2)ln(x^2-x+2) -2x + (7/2)(sqrt(7)/2)integral[sec^2(z)/((7/4) sec^2(z))]dz
(x-1/2)ln(x^2-x+2) -2x + (7/2)(sqrt(7)/2)integral[4/7]dz
Some numerators and denominators cancel:
(x-1/2) ln(x^2-x+2) - 2x + sqrt(7)integral[1]dz
(x-1/2) ln(x^2-x+2) - 2x + sqrt(7)z + C
Since u = (sqrt(7)/2) tan z, z = atan(2u/sqrt(7)). Since u = x-1/2, z = atan((2x-1)/sqrt(7))
(x-1/2) ln(x^2-x+2) - 2x + sqrt(7) atan((2x-1)/sqrt(7)) + C
And that's the result!
(I just checked this using Mathematica, and Mathematica got the same result)