Trending News
Use a linear approximation (or differentials) to estimate the given number. (Use the linearization of 1/x. Do?
Use a linear approximation (or differentials) to estimate the given number. (Use the linearization of 1/x. Do not round the answer.)
1/99
2 Answers
- Anonymous1 decade agoFavorite Answer
f(x) = 1/x ----> f '(x) = -1/x^2
1/99 is approximately 1/100 so close to this the gradient of the tangent is
-1/(100^2) = -0.0001
This means that for every unit to the right the function decreases by 0.0001 approximately and so for every unit to the left it increases by 0.0001 approximately.
Therefore 1/99 =approx= 1/100 + 0.0001 = 0.0101
Edit. A calculator will of course confirm that 1/99 = 0.010101010101.......
- Anonymous1 decade ago
metode 1)
f(x)=1/x
f '(x)= -1/x²
f(x + ∆x) ≈ f(x) + ∆x f '(x)
we have:
x= 100
∆x= -1
x + ∆x = 100 + (-1) = 99
f(100)= 1/100 = 0.01
f '(100) = -1/100² = -0.0001
hence
f(x + ∆x) ≈ f(x) + ∆x f '(x)
f(100 + (-1)) ≈ f(100) + (-1) f '(100)
f(99) ≈ 1/100 +(-1)(-1/100² )
f(99) ≈ 0.01 +(-1)(-0.0001)
1/99 ≈ 0.01 + 0.0001
1/99 ≈ 0.0101
metode 2)
f(x)=1/x
1/99 = 1/(100 - 1)
1/99 = (100 - 1)^(-1) : Binomial expansion
1/99 = 100^(-1) + (-1)(-1)100^(-2) + (-1)(-2)/2 (-1)^2 100^(-3) + . . .
1/99 = 1/100 + 1/100^(2) + 1/100^(3) + . . .
1/99 = 0.01 + 0.0001 + 0.000001 + . . .
1/99 = 0.0101010 . . .