THROUGH A SPHERE OF RADIUS r, A CYLINDRICAL HOLE OF RADIUS 2" IS DRILLED. FIND THE VOLUME OF WHAT REMAINS.?

Update:

Can it be shown that it is independent of r?

7 Answers

Relevance
  • 9 years ago
    Best Answer

    A figuree showing this will explain well. We need to consider ---

    1] Volume of original sphere of radius = r and deduct from this ---

    i] volume of cylinder made by hole of radius 2 and ii] volume of spherical caps made at both ends by this hole.

    Start with volu. of Sphere = 4/3 pi * r^3 --------------------------------[A]

    Second is vol.of cylinder = pi* (2)^2 *h where h= sqrt.(r^2-4)*2

    This equals to ---- 8*pi*sqrt(r^2-4)-------------------------------------------[B]

    Next is vol. of 2 caps [ on either ends] = 2 * pi*c^2(r-c/3) where c is the height of cap.

    Height of cap is given by { r-h/2) } = r-sqrt( r^2-4)

    So vol.of both caps = 2*pi*{ r-sqrt(r^2-4)}^2{ r-[r-sqrt(r^2-4)]/3} -----[C]

    Now Simplify and calculate [A] - [B] - [C]

    Simplification needs some 8 to 10 steps and the expression finally deduces to==

    4/3*pi*sqrt(r^2-4)* (r^2-4) which further reduces to final expression

    i.e 4/3*pi*[sqrt(r^2-4)]^3---- this is the remaining volume.

    Source(s): I.L.Maths
  • Anonymous
    9 years ago

    Volume of the remaining sphere (holed one) is given by

    (4/3)(22/7)R^3 -- volume removed

    = (4/3)(22/7)R^3 -- [ volume of a cylinder of radius 2 and height 2 sqrt(R^2 -- 2^2) + volume of two segments of sphere subtending angle 2 arcsin(2/R) at the centre]

    = (4/3)(22/7)R^3 -- [ (22/7)*2^3 sqrt(R^2 -- 4) + 2{ (pi/6) (3*2^2 + h^2)h}] where h = R -- sqrt(r^2 -- 2^2)

  • 9 years ago

    Start with the volume of a sphere:

    V1 = 4/3*(pi)*r^3

    Subtract the volume of the cylinder:

    V2 = (pi)*r^2*h = (pi)*2*2*h = (pi)*4*h

    So the remaining volume is:

    V1-V2 = 4/3*(pi)*r^3-(pi)*4*h

    This is not exact, because the cylinder assumes a flat circle on each end, yet the ends of the piece you are drilling out curves along the surfaces of the sphere.

  • 9 years ago

    radius of sphere = r

    radius of cylinder = 2''

    height of cylinder = diameter of sphere = 2r

    (1) volume of sphere = 4/3 pi r^3

    (2) volume of cylinder = pi (2)^2 .2r = 8pi r

    so the the volume of remains = 4/3pi r^3 - 8pi r

    = 4pi r( r^2/3 -2) ans

  • How do you think about the answers? You can sign in to vote the answer.
  • Mike G
    Lv 7
    9 years ago

    Volume of complete sphere = 4*PI*R^3/3

    Volume of cylinder = PI*2^2*2R

    Volume Remaining = 4*PI*R^3/3 - PI*4*2R

    = 4*PI*R*[R^2/3 - 2]

  • 9 years ago

    (4/3)*(pi*r*r*r) - (pi*2*2*l)

    but we have l =2r as drills through sphere

    => v(remaining) = 4*pi*r*[(r*r)/3 - 2] cubic units

  • 3 years ago

    youc7e089a7b897e86361351ff63d1b8ac5canc7e089a7b897e86361351ff63d1b8ac5easilyc7e089a7b897e86361351ff63d1b8ac5dec7e089a7b897e86361351ff63d1b8ac5ivec7e089a7b897e86361351ff63d1b8ac5thec7e089a7b897e86361351ff63d1b8ac5foc7e089a7b897e86361351ff63d1b8ac5mulac7e089a7b897e86361351ff63d1b8ac5thec7e089a7b897e86361351ff63d1b8ac5foc7e089a7b897e86361351ff63d1b8ac5mulac7e089a7b897e86361351ff63d1b8ac5ofc7e089a7b897e86361351ff63d1b8ac5thec7e089a7b897e86361351ff63d1b8ac5c7e089a7b897e86361351ff63d1b8ac5emainingc7e089a7b897e86361351ff63d1b8ac5matec7e089a7b897e86361351ff63d1b8ac5ial.c7e089a7b897e86361351ff63d1b8ac5Vc7e089a7b897e86361351ff63d1b8ac5=c7e089a7b897e86361351ff63d1b8ac5volumec7e089a7b897e86361351ff63d1b8ac5ofc7e089a7b897e86361351ff63d1b8ac5thec7e089a7b897e86361351ff63d1b8ac5sphec7e089a7b897e86361351ff63d1b8ac5icalc7e089a7b897e86361351ff63d1b8ac5segmentc7e089a7b897e86361351ff63d1b8ac5-c7e089a7b897e86361351ff63d1b8ac5volumec7e089a7b897e86361351ff63d1b8ac5ofc7e089a7b897e86361351ff63d1b8ac5thec7e089a7b897e86361351ff63d1b8ac5cylindec7e089a7b897e86361351ff63d1b8ac5c7e089a7b897e86361351ff63d1b8ac5thec7e089a7b897e86361351ff63d1b8ac5foc7e089a7b897e86361351ff63d1b8ac5mulac7e089a7b897e86361351ff63d1b8ac5is,c7e089a7b897e86361351ff63d1b8ac5Vc7e089a7b897e86361351ff63d1b8ac5=c7e089a7b897e86361351ff63d1b8ac58pic7e089a7b897e86361351ff63d1b8ac56[c7e089a7b897e86361351ff63d1b8ac5c7e089a7b897e86361351ff63d1b8ac5c7e089a7b897e86361351ff63d1b8ac5c7e089a7b897e86361351ff63d1b8ac5c7e089a7b897e86361351ff63d1b8ac5-c7e089a7b897e86361351ff63d1b8ac5c7e089a7b897e86361351ff63d1b8ac5c7e089a7b897e86361351ff63d1b8ac5c7e089a7b897e86361351ff63d1b8ac5c7e089a7b897e86361351ff63d1b8ac5c7e089a7b897e86361351ff63d1b8ac5c7e089a7b897e86361351ff63d1b8ac5c7e089a7b897e86361351ff63d1b8ac5c7e089a7b897e86361351ff63d1b8ac5c7e089a7b897e86361351ff63d1b8ac5c7e089a7b897e86361351ff63d1b8ac5]c7e089a7b897e86361351ff63d1b8ac5note:c7e089a7b897e86361351ff63d1b8ac5xc7e089a7b897e86361351ff63d1b8ac5=c7e089a7b897e86361351ff63d1b8ac5multiplicationc7e089a7b897e86361351ff63d1b8ac5signc7e089a7b897e86361351ff63d1b8ac5sqc7e089a7b897e86361351ff63d1b8ac5tc7e089a7b897e86361351ff63d1b8ac5=c7e089a7b897e86361351ff63d1b8ac5squac7e089a7b897e86361351ff63d1b8ac5ec7e089a7b897e86361351ff63d1b8ac5c7e089a7b897e86361351ff63d1b8ac5oot

Still have questions? Get your answers by asking now.