## Trending News

# u-substitution problem?

evaluate the following integral by first making the substitution u^2=x+4:

integral: (dx)/(x*sqrt(x+4))

Stuck, need help! Thanks!

### 2 Answers

- cidyahLv 71 decade agoFavorite Answer
∫ dx / x sqrt(x+4)

u^2 = x+4

2udu = dx

∫ dx / x sqrt(x+4) = ∫ 2u du / (u^2-4)u

= ∫ 2 du / (u^2-4) = 2 ∫ du/(u+2)(u-2)

1/(u+2)(u-2) = A/(u+2) + B/(u-2)

1 = A(u-2) + B(u+2)

equate the coefficient of u

0=A+B

A=-B

equate the constants

1=-2A+2B

1 = 2B+2B

B=1/4

A=-1/4

2 ∫ du/(u+2)(u-2) =∫ [ -2/4(u+2)+2/4(u-2)] du

= (-1/2) ln(u+2) + 1/2 ln(u-2)

= (-1/2) ln (sqrt(x+4) + 2) + (1/2) ln(sqrt(x+4) -2) + C

- MechEng2030Lv 71 decade ago
∫dx/(x)√(x + 4)

u = √(x + 4)

u² - 4 = x

2u du = dx

∫2u du/(u² - 4)(u)

∫2 du/(u² - 4)

∫2 du/(u + 2)(u - 2)

1/2*∫(u + 2) - (u - 2)/(u + 2)(u - 2) du

1/2*∫1/(u - 2) - 1/(u + 2) du

1/2[ln|u - 2| - ln|u + 2|] + C

1/2*ln|(u - 2)/(u + 2)| + C

1/2*ln|(√(x + 4) - 2)/(√(x + 4) + 2)| + C