Yahoo Answers is shutting down on May 4th, 2021 (Eastern Time) and beginning April 20th, 2021 (Eastern Time) the Yahoo Answers website will be in read-only mode. There will be no changes to other Yahoo properties or services, or your Yahoo account. You can find more information about the Yahoo Answers shutdown and how to download your data on this help page.

kenct113 asked in 科學數學 · 1 decade ago

偏導函數:極大極小值

以下3題

我有點不瞭解

麻煩

能幫我算出過程與答案

謝謝!!

1.

f ( x , y ) = 4x^2 + xy + y^2 + 2x - y + 13,試決定有無局部極大極小?

2.

f ( x , y ) = x^2 + 4xy + y^2 + 2x - y + 13,試決定有無局部極大極小?

3.

f ( x , y ) = x^2 - y^2 + 2x - 4y + 5,試決定有無局部極大極小?

..1332

2 Answers

Rating
  • linch
    Lv 7
    1 decade ago
    Favorite Answer

    1. f(x, y) = 4x^2 + xy + y^2 + 2x - y + 13

    f_x(x, y) = 8x + y + 2

    f_y(x, y) = x + 2y - 1

    f_x = 0, f_y = 0 ==> (x, y) = (-1/3, 2/3) is a critical pont(臨界點) of f.

    f_xx(x, y) = 8, f_xy(x, y) = 1, f_yy (x, y) = 2

    D(x, y) = f_xx(x, y) f_yy(x, y) - f_xy(x, y)^2

    D(- 1/3, 2/3) = 16 - 1 = 15 > 0 and f_xx(- 1/3, 2/3) = 1 > 0

    f( - 1/3, 2/3) =

    f has a local minimum value 37/3 at the point (- 1/3, 2/3).

    2. f(x, y) = x^2 + 4xy + y^2 + 2x - y + 13

    f_x(x, y) = 2x + 4y + 2

    f_y(x, y) = 4x + 2y - 1

    f_x = 0, f_y = 0 ==> (x, y) = (2/3, - 5/6) is a critical pont of f.

    f_xx(x, y) = 2, f_xy(x, y) = 4, f_yy (x, y) = 2

    D(x, y) = f_xx(x, y) f_yy(x, y) - f_xy(x, y)^2

    D( 2/3, -5/6) = 4 - 16 = - 12 < 0 and f( 2/3, -5/6) = 169/12

    ( 2/3, - 5/6, 169/12) is a saddle point(鞍點). (鞍點沒有極值)

    3. f(x, y) = x^2 - y^2 + 2x - 4y + 5

    f_x(x, y) = 2x + 2

    f_y(x, y) = - 2y - 4

    f_x = 0, f_y = 0 ==> (x, y) = ( - 1, - 2) is a critical pont of f.

    f_xx(x, y) = 2, f_xy(x, y) = 0, f_yy (x, y) = - 2

    D(x, y) = f_xx(x, y) f_yy(x, y) - f_xy(x, y)^2

    D(- 1, - 2) = - 4 < 0 and f( - 1, - 2) = 8

    ( - 1, - 2, 8) is a saddle point.

  • 1 decade ago

    3個都對f(x,y)做一次微分和二次微分

    1.Df(x,y)=(8x+y+2,x+2y-1)

    微分等於0===>局部極值

    解聯立方程式8x+y+2=0和x+2y-1=0

    解得x=-1/3,y=2/3

    做二次微分(判斷極大or極小or盲點saddle)

    D²f(x,y)=

    [8 1]

    [1 2]

    因為剛好是常數,帶入x=-1/3,y=2/3還是此2*2矩陣

    行列式值det(D²f(x,y))=15大於0且特徵數eigenvalues=5+根號10和5-根號10(皆大於0)===>局部極小...Ans

    如果行列式值小於0且eigenvalues皆小於0,則為局部極大

    如果eigenvalues一個大於0一個小於0,則此點是saddle,也就是沒有極值

    接下來兩題應該都會了吧~

    2009-06-10 01:54:33 補充:

    自己算比較充實唷XD

    Source(s):
Still have questions? Get your answers by asking now.