Anonymous
Anonymous asked in 科學數學 · 1 decade ago

線代norm証明一題

証明

|| x||_∞ = lim (n→∞) || x||_p

x=(x_1,x_2,...,x_n) in C^n

謝謝

Update:

sorry

|| x||_∞ = lim (p→∞) || x||_p

謝謝

1 Answer

Rating
  • 1 decade ago
    Favorite Answer

    題目有錯字!

    2009-03-23 22:43:44 補充:

    設 M= max{ |x1|, |x2|, ..., |xn| } = || x ||_∞

    M <= || x ||_p <= (nM^p)^(1/p) = n^(1/p) * M

    => M <= lim(p->∞) || x ||_p <= lim(p->∞) [n^(1/p)M]

    左右兩邊極限值均為M

    =>(Squeeze) lim(p->∞) || x||_p = M = || x||_∞

    得證

Still have questions? Get your answers by asking now.