Trending News
MATHS PROBLEM
1÷(√1+√2)+1÷(√2+√3)+1÷(√3+√4)+......+1÷(√2008+√2009)
=? 5該我要答案&詳細解釋
2 Answers
- 1 decade agoFavorite Answer
1÷(√1+√2)+1÷(√2+√3)+1÷(√3+√4)+......+1÷(√2008+√2009)
Consider
1÷(√1+√2)
=[1÷(√1+√2)] [ (√1-√2) ÷ (√1-√2) ]
= (√1-√2) ÷ [(√1)^2 - (√2)^2 ]
= (√1-√2) ÷ (1-2)
= - (√1-√2)
Similarly,
1÷(√2+√3)
= -(√2-√3)
and
1÷(√3+√4)
= - (√3-√4)
...
1÷(√1+√2)+1÷(√2+√3)+1÷(√3+√4)+......+1÷(√2008+√2009)
= [- (√1-√2)] + [-(√2-√3)] + [-(√2-√3)] + [- (√3-√4)]+...+ [ -(√2008-√2009)]
= - [√1-√2+√2-√3+√2-√3+√3-√4+...+√2008-√2009]
= -[√1-√2009]
= -1+√2009
- 1 decade ago
To solve:
1÷(√1+√2)+1÷(√2+√3)+1÷(√3+√4)+......+1÷(√2008+√2009)=?
Method:
Let S = [ 1÷(√1+√2) + 1÷(√2+√3) + 1÷(√3+√4) + ... + 1÷(√2008+√2009) ]
or S = [ S(1) + S(2) + S(3) + ... + S(2008) ]
where S(r) = 1÷[√r+√(r+1)]
Consider the (r)th term of S, or S(r),
S(r) = 1÷[√r+√(r+1)]
S(r) = 1{ √r - √(r+1) } ÷ [√r+√(r+1)]{ √r - √(r+1) }
S(r) = {√r - √(r+1) } ÷ { r - (r+1) }
S(r) = {√r - √(r+1) } ÷ {-1}
S(r) = - [ √r - √(r+1) ]
S(r) = √(r+1) - √r
therefore:
S(1) = √(1+1) - √1 , and S(2008) = √(2008+1) - √2008
or
S(2008) = √2009 - √2008 , and S(1) = √2 - √1
Similarly,
S(2) = √3 - √2
S(3) = √4 - √3
S(2006) = √2007 - √2006
S(2007) = √2008 - √2007
Since S = S(1) + S(2) + S(3) + ... + S(2008)
S = S(2008) + S(2007)+ S(2006) + ... + S(3) + S(2) + S(1)
S = ( √2009 - √2008 ) + ( √2008 - √2007 ) + ( √2007 - √2006) + ... + ( √4 - √3 ) + ( √3 - √2 ) + ( √2 - √1)
So
S = √2009 - 1
2009-03-03 00:21:45 補充:
Sorry, I don't know why the font is messed up.
2009-03-03 00:41:02 補充:
Let S = [ S(1) + S(2) + S(3) + ... + S(2008) ]
where S(r) = sqrt(r+1) - sqrt(r) and r belongs to 1, 2, through 2007 & 2008
or
S = S(2008) + S(2007) + S(2006) + ... + S(3) + S(2) + S(1)
S = [ sqrt(2009) - sqrt(2008) ] + [ sqrt(2008) - sqrt(2007) ] + ... + [ sqrt(2) - sqrt(1) ]
Anyway,
S = sqrt(2009) - 1