promotion image of download ymail app
Promoted
風行草 asked in 教育與參考考試 · 1 decade ago

請問一些微積分的問題

總共有4題

但是因為顯這裡是不出來

所以我把問題貼到我的相簿上

雖然會造成您的不便

但還煩請您耐心的幫我解決疑惑

謝謝

http://www.wretch.cc/album/show.php?i=dg456trgv&b=...

請詳細解說為什麼上式=下式

還有第3題 我不知道哪個是正確答案

所以且挑出正確答案並解釋為什麼上式=下式

拜託大大了 謝謝

2 Answers

Rating
  • 1 decade ago
    Favorite Answer

    1.

    Consider (secx)' = secx*tanx and (tanx)' = secx^2

    Ans =∫secx(secx + tanx) / (secx + tanx) dx

    = ∫(secx^2 + secxtanx) / (secx + tanx) dx

    = ln |secx + tanx| + C

    2.

    Consider [√(x^2 + 2x + 26)]' = (2x + 2) / 2√(x^2 + 2x + 26)

    Ans=∫d(x^2 + 2x + 26) / √(x^2 + 2x + 26) dx

    = 2√(x^2 + 2x + 26) + C

    ( or you can let t = x^2 + 2x + 26, dt = (2x + 2)dx )

    3.

    Consider [ln(x^2 + 1)]' = 2x / (x^2 + 1)

    Ans = (1/2)∫d(x^2 + 1) / (x^2 + 1) dx

    = (1/2) ln |x^2 + 1|

    = (1/2) ln (x^2 + 1) + C

    since both x^2 and 1 are positive, so we have ln |x^2 + 1| = ln(x^2 + 1)

    ( or you can let t = x^2 + 1, dt = 2xdx )

    4.

    Consider [ln(x^2 + 2)]' = 2x/(x^2 + 2) and [1/(x^2 + 2)]' = -2x / [(x^2 + 2)^2]

    Ans=∫(1/2) d(x^2 + 2)/(x^2 + 2) dx - 5∫(1/2)d(x^2 + 2)/(x^2 + 2)^2 dx

    = -(1/2)ln|x^2 + 2| + (5/2)[1/(x^2 + 2)]+C

    ( or you can let t = x^2 + 2, dt = 2xdx )

    • Commenter avatarLogin to reply the answers
  • linch
    Lv 7
    1 decade ago

    第三題後面兩個都可以

    其實都是基礎的變數變換

    • Commenter avatarLogin to reply the answers
Still have questions? Get your answers by asking now.