Anonymous
Anonymous asked in 科學數學 · 1 decade ago

實變一題,可積分函數

If |E| = 0, then ∫_E f = 0

謝謝

Update:

怎麼這麼複雜??課本只簡單的帶過…

沒想到這麼複雜!

1 Answer

Rating
  • 1 decade ago
    Favorite Answer

    只需考慮f≥0的情形 因為f =f^+-f^-

    則∫_E f=(∫_E f^+)-(∫_E f^-)

    If f=0, then ∫_{f=0} f=0, f∈L^1(E), f<+∞ a.e 即 |{x:f(x)=+∞}|=0

    and ∫_{f=+∞}f=0

    so it sufficies to show 0<f<+∞:

    Set E_n={x:2^(n-1)<f(x)<=2^n} E_n∩E_m=∅

    |E_n|=0 for all n

    Note that {x:0<f(x)<+∞}=∪_(n=1~∞){x:2^(n-1)<f(x)<=2^n}

    Hence Σ_(n=1~∞)2^(n-1)|x:2^(n-1)<f(x)<=2^n}|<=Σ_(n=1~∞)∫_{x:2^(n-1)<f(x)<=2^n}f =∫_E f <=Σ_(n=1~∞)2^n|{x2^(n-1)<f(x)<=2^n}

    上面不等式左右兩邊都是零,兩邊一夾, ∫_Ef=0

    2008-12-29 00:18:24 補充:

    我漏了{ x:0<=1}的情形:

    0<=∫_{x:0<=1} f<=|{x:0<=1}|=0

    =>∫_{x0<=1} f=0

    2008-12-29 00:19:01 補充:

    0<=1 是 0<=1

    2008-12-29 00:19:21 補充:

    0<=1是0<=1

    2008-12-29 00:22:45 補充:

    0<=1是 0小於f(x)小於等於1

    2008-12-29 00:34:36 補充:

    我想應該還有更簡單的方法

    目前只想到這樣作

    • Login to reply the answers
Still have questions? Get your answers by asking now.