Trending News
Show that (cosx)^3 = (1/4)(3cosx + cos3x)?
Thanks heaps.
8 Answers
- germanoLv 71 decade agoFavorite Answer
cos³x = (1/4)[3cosx + cos(3x)]
rewrite (3x) as (2x+x):
cos³x = (1/4)[3cosx + cos(2x+ x)] →
recall cosine addiction rule:
cos(a + b) = cos(a) cos(b) - sin(a) sin(b)
thus:
cos³x = (1/4){3cosx + [cos(2x) cosx - sin(2x) sinx]} →
find cos(2x) and sin(2x) using the double-angle identities:
cos(2x) = cos²x - sin²x
sin(2x) = 2sinx cosx
cos³x = (1/4){3cosx + [(cos²x - sin²x)cosx - (2sinx cosx) sinx]} →
cos³x = (1/4)[3cosx + (cos³x - sin²x cosx - 2sin²x cosx)] →
cos³x = (1/4)(3cosx + cos³x - 3sin²x cosx) →
replace sin²x with 1 - cos²x:
cos³x = (1/4)[3cosx + cos³x - 3(1 - cos²x) cosx] →
cos³x = (1/4)[3cosx + cos³x - 3(cosx - cos³x)] →
cos³x = (1/4)(3cosx + cos³x - 3cosx + 3cos³x) →
cos³x = (1/4)(4cos³x) →
cos³x = cos³x
thus your identity is verified
I hope it helps...
Bye!
- Mein Hoon NaLv 71 decade ago
we know
cos(A + B) = cos A cos B - sin A sin B ...1
put B= A to get
cos 2A = cos^2 A - sin ^2 A = 2 cos ^2 A - 1
similarly sin 2A = 2 sin A cos A
now in 1 put B = 2A
cos (A+2A) = cos A(2 cos ^2 A - 1) - sin A ( 2 sin A cos A)
= 2 cos ^2 A cos A - cos A - 2 cos A sin ^2A
=2 cos ^2 A cos A - cos A- 2 cos A (1- cos ^2 A)
= 4 cos^2 A - 3 cos A
cos 3A = 4 cos^3 A - 3 cos A
so cos 3A + 3 cos A = 4 cos^3 A
so cos^3 A= 1/4( cos 3A + 3 cos A)
proved
- How do you think about the answers? You can sign in to vote the answer.
- 1 decade ago
cos^3x = (1/4)(3cosx + cos3x)
cos3x = 4cos^3x - 3cosx, so
cos^3x = (1/4)(3cosx + 4cos^3x - 3cosx)
cos^3x = 1/4(4cos^3x)
cos^3x = cos^3x
- Scrander berryLv 71 decade ago
RHS = (1/4)(3cosx + cos(3x))
= (1/4)(3cos(x) + cos(x + 2x))
= (1/4)(3cos(x) + cos(x)cos(2x) - sin(x)sin(2x))
= (1/4)(3cos(x) + cos(x)(cos²(x) - sin²(x)) - 2sin²(x)cos(x))
= (1/4)(3cos(x) + cos³(x) - cos(x)sin²(x) - 2sin²(x)cos(x))
= (1/4)(3cos(x) + cos³(x) - 3sin²(x)cos(x))
= (1/4)(3cos(x)(1 - sin²(x))+ cos³(x))
= (1/4)(3cos(x)cos²(x)+ cos³(x))
= (1/4)(4cos³(x))
= cos³(x)
= LHS qed
- Anonymous1 decade ago
u need to use the formula of cos3x and expand it
- 1 decade ago
it doesn't...IDENTIES...(cosx)^2= 1/2(1+cos2x) (ANGLE NEVER CHANGES............so........(cosx)^3=1/3(1+cos2x')