Trending News
Trigonometric Identity?
(cos^2x) / (1+2sin(x)-3sin^2(x)) = (1 + sin(x)) / (1 + 3sin(x))
Please show ALL the steps involved so that I can understand it better.
Thank you in advance.
2 Answers
- Scrander berryLv 71 decade agoFavorite Answer
LHS = cos²(x) / [1 + 2sin(x) - 3sin²(x)]
= [1 - sin²(x)] / [(1 + 3sin(x))(1 - sin(x))]
= [(1 - sin(x))(1 + sin(x))] / [(1 + 3sin(x))(1 - sin(x))]
= [1 + sin(x)] / [1 + 3sin(x)]
= RHS qed
- 1 decade ago
i am working on the left hand side
numerator
cos^2(x)=1-sin^2(x)
1-sin^2(x)=(1-sin(x))(1+sin(x)) (difference of squares)
the denominator is a trigonometric quadratic equation
so factor it
(1+2sin(x)-3sin^2(x))= -(3sin^2(x)-2sin(x)-1)
-(3sin^2(x)-2sin(x)-1)=-(3sin^2(x)-3sin(x)+sin(x)-1)
=-( 3sin(x)(sin(x)-1)+1(sin(x)-1))
=-(3sin(x)+1)(sin(x)-1)
multiply the second bracket by the negative sign
=(3sin(x)+1)(1-sin(x))
now the left hand side becomes
(1-sin(x))(1+sin(x))/(3sin(x)+1)(1-sin(x))
=(1+sin(x))/(3sin(x)+1)
there fore left hand side = right hand side