Trending News
Promoted
prove it
x1,x2,x3,......,xn為互不相同的正整數,n>1
求證:1/x1^2+1/x2^2+1/x3^2+......+1/xn^2<2
Update:
x1,x2,x3,......,xn不一定是由1到n的正整數
例如2,4,7,10,......,150
1 Answer
Rating
- Anonymous1 decade agoFavorite Answer
由於 x1,x2,x3,......,xn為互不相同的正整數, 換言之, 它們最小的可能值為 1, 2, 3, ... , n (不分次序)
所以:
1/[(x1)²] + 1/[(x2)²] + 1/[(x3)²] + ... 1/[(xn)²] 的最大可能值為:
1/1² + 1/2² + 1/3² + ... + 1/n²
= 1 + 1/2² + 1/3² + ... + 1/n²
現在:
1/2² + 1/3² + ... + 1/n²
= Σ (i = 2 → n) 1/i²
< Σ (i = 2 → n) 1/[i(i - 1)]
= Σ (i = 2 → n) [1/(i - 1) - 1/i]
= [Σ (i = 2 → n) 1/(i - 1)] - [Σ (i = 2 → n) 1/i]
= [Σ (i = 1 → n - 1) 1/i] - [Σ (i = 2 → n) 1/i]
= 1 - 1/n
< 1
所以,
1 + 1/2² + 1/3² + ... + 1/n² < 1 + 1
1 + 1/2² + 1/3² + ... + 1/n² < 2
即是 1/[(x1)²] + 1/[(x2)²] + 1/[(x3)²] + ... 1/[(xn)²] 的最大可能值仍然小於 2.
結論:
1/[(x1)²] + 1/[(x2)²] + 1/[(x3)²] + ... 1/[(xn)²] < 2
Source(s): My Maths knowledge
Still have questions? Get your answers by asking now.