Nitrogen Cycle?

i need help with it. i don't understand it and the textbook is very esoteric and difficult to understand. i'm a 9th grader. links and diagrams would be helpful. this isn't for homework, but i need a clearer understanding of it. i know there are 4 processes and it has to do with nitrogen. as detailed and lucid as you can please thankyou!

1 Answer

  • 1 decade ago
    Favorite Answer

    The nitrogen cycle is the biogeochemical cycle that describes the transformations of nitrogen and nitrogen-containing compounds in nature.

    Earth's atmosphere is about 78% nitrogen, making it the largest pool of nitrogen. Nitrogen is essential for many biological processes; and is crucial for any life here on Earth. It is in all amino acids, is incorporated into proteins, and is present in the bases that make up nucleic acids, such as DNA and RNA. In plants, much of the nitrogen is used in chlorophyll molecules which are essential for photosynthesis and further growth.[1]

    Processing, or fixation, is necessary to convert gaseous nitrogen into forms usable by living organisms. Some fixation occurs in lightning strikes, but most fixation is done by free-living or symbiotic bacteria. These bacteria have the nitrogenase enzyme that combines gaseous nitrogen with hydrogen to produce ammonia, which is then further converted by the bacteria to make its own organic compounds. Some nitrogen fixing bacteria, such as Rhizobium, live in the root nodules of legumes (such as peas or beans). Here they form a mutualistic relationship with the plant, producing ammonia in exchange for carbohydrates. Nutrient-poor soils can be planted with legumes to enrich them with nitrogen. A few other plants can form such symbioses.

    Other plants get nitrogen from the soil by absorption at their roots in the form of either nitrate ions or ammonium ions. All nitrogen obtained by animals can be traced back to the eating of plants at some stage of the food chain.

    Such as nitrate and nitrite) into groundwater can occur. Elevated nitrate in groundwater is a concern for drinking water use because nitrate can interfere with blood-oxygen levels in infants and cause methemoglobinemia or blue-baby syndrome.[2] Where groundwater recharges stream flow, nitrate-enriched groundwater can contribute to eutrophication, a process leading to high algal, especially blue-green algal populations and the death of aquatic life due to excessive demand for oxygen. While not directly toxic to fish life like ammonia, nitrate can have indirect effects on fish if it contributes to this eutrophication. Nitrogen has contributed to severe eutrophication problems in some water bodies. As of 2006, the application of nitrogen fertilizer is being increasingly controlled in Britain and the United States. This is occurring along the same lines as control of phosphorus fertilizer, restriction of which is normally considered essential to the recovery of eutrophied waterbodies.

    Ammonia is highly toxic to fish life and the water discharge level of ammonia from wastewater treatment plants must often be closely monitored. To prevent loss of fish, nitrification prior to discharge is often desirable. Land application can be an attractive alternative to the mechanical aeration needed for nitrification.

    During anaerobic (low oxygen) conditions, denitrification by bacteria occurs. This results in nitrates being converted to nitrogen gas and returned to the atmosphere. Nitrate can also be reduced to nitrite and subsequently combine with ammonium in the anammox process, which also results in the production of dinitrogen gas.

    *for a figure of the nitrogen cycle, u can contact me at this email add:

Still have questions? Get your answers by asking now.