Trending News
Você é capaz?
Estou tendo um problema... nao consigo calcular o angulo β em funcao de θ... Sendo R, o raio da circunferencia maior, r, raio da menor, "e" a distancia entre as duas circunferencias e β é desconhecido.
Coisa do tipo: β = f(θ)
Jürgen, vc estaria certo se fosse θ = f(β), mas é contrario...
Jose Paulo, é errado afirmar que e = r*cos(θ). Se bem que, visualmente falando, parece... Se eu colocar e = 10, r = 60 e θ = 45º, provo que esta formula ai em cima é furada...
A partir daí seu raciocinio vai por um caminho errado... Nao entendi seu racinio... complicado...
Vou colocar aqui o q eu consegui depois de tanto "mastigar" esse problema...
"
No triangulo, posso definir uns angulos internos: θ (ja definido) na esquerda e σ na direita.
Percebe-se que:
θ + σ = β (formula Z)
Pela lei dos senos:
R / sen θ = e / sen σ
=>
sen σ = (e*sen θ) / R
=>
σ = arcsen [ (e*sen θ) / R ]
=>
Usando a formula Z:
β - θ = arcsen [ (e*sen θ) / R ]
=>
β = θ + arcsen [ (e*sen θ) / R ]
"
4 Answers
- Anonymous1 decade agoFavorite Answer
Você tem toda a razão. Aí vai o meu novo raciocínio que acho que está certo, pois pode-se chegar a mesma resposta partindo-se da expressão do amigo Jürgen. A solução é muito simples quando se encherga. Difícil é explicar sem um desenho, mas vamos lá.
NOVA RESPOSTA:
Semelhança de triângulos (triângulos retângulos formados pelo centro do círculo menor, interseção da reta do ângulo teta com os 2 círculos, e pontos de interseção das verticais baixadas desses pontos com a reta horizontal que passa pelo centro do círculo menor):
r.cos(teta)/[R.cos(beta)+e]=
=r.sen(teta)/[R.sen(beta)]
R.cos(teta).sen(beta)=
=R.cos(beta).sen(teta)+R.sen(teta).e
R.[sen(beta)cos(teta)-sen(teta)cos(beta)]=
=e.sen(teta)
R.sen(beta-teta)=e.sen(teta)
sen(beta-teta)=e.sen(teta)/R
beta-teta=arcsen[(e.sen(teta)/R]
beta=teta+arcsen[e.sen(teta)/R]
Note que da expressão do Jürgen, pode-se chegar a mesma resposta. Basta fazer
tg(teta)=sen(teta)/cos(teta)=
=R.sen(beta)/[R.cos(beta)+e]
R.cos(beta).sen(teta)+e.sen(teta)=
=R.sen(beta).cos(teta)
e.sen(teta)=R.sen(beta-teta)
etc...
resposta:....
beta=teta+arcsen[e.sen(teta)/R]
- Anonymous1 decade ago
Lindo,
Pergunte ao Jose Paulo D !
Garanto que ele vai te responder rapidão!
Beijos!
- M.M.D.C.Lv 71 decade ago
Um bocado complicado, sem desenhar não dá para explicar
Basicamente é desenhar dois triangulos retangulos, calcular seus lados em função de R e e
O resultado é
tg θ = senβ/ (cosβ +e/R)