Simplify : (s / (s^(2) + 25)) + (2 / (s^(2) + 4)) - plz help!?

3 Answers

Relevance
  • Anonymous
    1 decade ago
    Favorite Answer

    Not much to do, except combine the fractions: LCD is

    (s^2 + 25)(s^2 + 4), so

    s(s^2 + 4) + 2(s^2 + 25)

    -----------------------------------

    (s^2 + 5)(s^2 + 4)

    s^3 + 4s + 2s^2 + 50

    ------------------------------

    (s^2 + 5) (s^2 + 4)

    s^3 + 2s^2 + 4s + 50

    -----------------------------

    (s^2 + 5)(s^2 + 4)

    done.

  • 1 decade ago

    (s / (s^(2) + 25)) + (2 / (s^(2) + 4))=

    {s[(s^2)+4] / (s^(2)+4)(s^(2) + 25)} + {2(s^(2)+25)/(s^(2)+4)(s^(2) + 25)}

    ={ [s(s^(2) + 4)] + 2[s^(2) + 25] } / [(s^(2) + 25)(s^(2) + 4)]

    =(s^3 + 2s^2 + 4s + 25) / (s^(2) + 4)(s^(2) + 25)

  • 1 decade ago

    (s / (s^(2) + 25)) + (2 / (s^(2) + 4)) =

    s(s^2 + 4) + 2(s^2 + 25)

    --------------------------------- =

    (s^2 + 25)(s^2 + 4)

    s^3 + 4s + 2s^2 + 50

    ----------------------------------- =

    (s^2 + 25)(s^2 + 4)

    s^3 + 2s^2 + 4s + 50

    ---------------------------- =

    (s^2 + 25)(s^2 + 4)

Still have questions? Get your answers by asking now.