Trending News
Promoted
一題 chain rule 的題目
u : |R^n -> |R ; O : 一個 n 階正交矩陣定義 △u = Σ_[1,n] u_ii (u_ii 表示 u(x) 對其第 i 個變數作偏微分兩次)若 u 滿足 △u = 0 , 證明 △u(O(x)) = 0這題我用 chain rule 硬作後面出現三個 Σ =.= 有較好的作法嗎 ? (也許可以利用正交矩陣的某種性質 ?)
2 Answers
Rating
- EricLv 61 decade agoFavorite Answer
Laplacian operator: Δ =∇T∇Δ[u(Ox)] = ∇T∇[u(Ox)]= ∇T[OT∇u(Ox)] (chain rule)= OT∇T[∇u(Ox)]= OTO∇T∇u(Ox) (chain rule, (OT)T = O)= Δu(Ox) (OTO = I)= 0
2006-10-17 07:52:04 補充:
Still have questions? Get your answers by asking now.