Trending News
[數學] 請教幾題工程數學
1. Find the eigenvalues and eigenvectors of the matrix
-2 2 -3
B= 2 1 -6
-1 -2 0
2. Solve the initial value problem:
y\'=3x^2 - y/x , y(1)=5
3. Given f(t) = sin6tu s(t) , find the value of L[f\"(t)],(Hint us(t) is unit step fubction)
4. Given F(s)= 1 / s(s+2)^2 , find the value of L^-1[F(s)]
5. Given
A= 0 1
-2 -3
find the value of e^At
6. Find the solution of the O.D.E : y\' - y =1 + 3sint , y(0)=0
7. Find (t - 4t^2 y^3)dy + ( 4^t4 - y)dt = 0
1 Answer
- 1 decade agoFavorite Answer
●1.
det(B-λI)=0 ,可得eigenvaluesλ= -3,-3,5
λ= -3 代入 (B-λI)X=0 ,X=[x1,x2,x3]'
可得eigenvectors [-2,1,0]',[3,0,1]'
λ= 5 代入 (B-λI)X=0
可得eigenvector [-1/2,1,1/2]'
●2.
由I=∫e^(1/x)dx 可得一階方程式的積分因子I為 X
代入原方程式 Iy=∫IQ,Q=3x^2
y=3/4x^3 + c
y(1)=5代入得 c = 17/4
故得解 y=3/4x^3 + 17/4
●3.
●4.
F(s)= 1 / s(s+2)^2 = 1/4s - 1/4(s+2) -1/2(s+2)^2
L^-1[F(s)] = 1/4 -(e^-2t)/4 -(te^-2t)/2
●5.
A eigenvalues 為 -2,-1 ,D=[-2 0;0 -1]
得過渡矩陣S=[1,1;2,-1],S^-1=[1/3,1/3;2/3,-1/3]
e^At = Se^DS^-1=1/3[(e^-2)+2(e^-1),(e^-2)-(e^-1);2(e^-2)-2(e^-1),2(e^-2)+(e^-1)]
●6.
(1)
由特性方程式可知m-1=0,m=1
可得Yh=ce^x
(2)
再求Yp
令Yp=A+Bsint+Ccost 代入原方程式
可得A=1 ,B=C=-3/2
y(x)=Yh+Yp=ce^x+1-(3/2)(sint+cost)
再由y(0)=0,可得c=1/2
故y(x)=(1/2)e^x+1-(3/2)(sint+cost)
●7. 這題題目有打錯嗎???
(矩陣表示法我是用Matlab的語法喔,不知道你看不看的懂 如題目一的矩陣用Matlab來表示的話為[-2,2,-3;2,1,-6;-1,-2,0],[]' 如果矩陣右上方多一個 ' 的話表示轉置)
2006-06-01 00:16:22 補充:
●3.L[f"(t)]=s^2 F(s)-sF(0)-F'(0)L[f"(t)]=6s/(s^2+36)
Source(s): 不知道有沒有解錯^^"