## Trending News

Promoted

### 1 Answer

Rating

- 2 decades agoFavorite Answer
以下用積分證明

橢圓方程式 x^2/a^2 + y^2/b^2 = 1

令x=a*cosθ，y=b*sinθ

則四分之一橢圓面積=∫(0~a) y*dx = ∫(π/2~0) b*sinθ*d(a*cosθ)

=∫(π/2~0) b*sinθ*(-a*sinθ)*dθ=∫(0~π/2) ab*(sinθ)^2*dθ

=∫(0~π/2) ab*[1-cos(2θ)]/2*dθ=ab/2*∫(0~π/2) [1-cos(2θ)]*dθ

=ab/2*[θ-sin(2θ)] (0~π/2)=ab/2*[π/2-sin(π)] - ab/2*[0-sin(0)]=πab/4

所以橢圓面積=4*πab/4=πab

Source(s): 微積分

Still have questions? Get your answers by asking now.